Random Walks in Compact Groups
نویسندگان
چکیده
Let X1, X2, . . . be independent identically distributed random elements of a compact group G. We discuss the speed of convergence of the law of the product Xl · · ·X1 to the Haar measure. We give poly-log estimates for certain finite groups and for compact semi-simple Lie groups. We improve earlier results of Solovay, Kitaev, Gamburd, Shahshahani and Dinai. 2010 Mathematics Subject Classification: 60B15, 22E30, 05E15
منابع مشابه
Isoperimetric Profile and Random Walks on Locally Compact Solvable Groups
We study the large-scale geometry of a large class of amenable locally compact groups comprising all solvable algebraic groups over a local field and their discrete subgroups. We show that the isoperimetric profile of these groups is in some sense optimal among amenable groups. We use this fact to compute the probability of return of symmetric random walks, and to derive various other geometric...
متن کاملar X iv : m at h / 07 03 33 9 v 1 [ m at h . FA ] 1 2 M ar 2 00 7 APPROXIMATION OF QUANTUM LÉVY PROCESSES BY QUANTUM RANDOM WALKS
Every quantum Lévy process with a bounded stochastic generator is shown to arise as a strong limit of a family of suitably scaled quantum random walks. The note is concerned with investigating convergence of random walks on quantum groups to quantum Lévy processes. The theory of the latter is a natural non-commutative counterpart of the theory of classical Lévy processes on groups ([Hey]). It h...
متن کاملIsoperimetric Profile of Subgroups and Probability of Return of Random Walks on Geometrically Elementary Solvable Groups
We study a large class of amenable locally compact groups containing all solvable algebraic groups over a local field and their discrete subgroups. We show that the isoperimetric profile of these groups is in some sense optimal among amenable groups. We use this fact to compute the probability of return of symmetric random walks, and to derive various other geometric properties which are likely...
متن کاملRecurrence and ergodicity of random walks on linear groups and on homogeneous spaces
We discuss recurrence and ergodicity properties of random walks and associated skew products for large classes of locally compact groups and homogeneous spaces. In particular we show that a closed subgroup of a product of finitely many linear groups over local fields supports a recurrent random walk if and only if it has at most quadratic growth. We give also a detailed analysis of ergodicity p...
متن کاملProbability on Groups: Random Walks and Invariant Diffusions, Volume 48, Number 9
968 NOTICES OF THE AMS VOLUME 48, NUMBER 9 W hat do card shuffling, volume growth, and Harnack inequalities have to do with each other? They all arise in the study of random walks on groups. Probability on groups is concerned with probability measures and random processes whose properties are dictated in part by an underlying group structure. It is a diverse area where one finds both sophistica...
متن کامل